admin 管理员组文章数量: 888299
匈牙利算法!!!
匈牙利算法 求最大 匹配 的一种 显而易见 的算法是:先找出全部匹配,然后保留匹配数最多的。但是这个算法的复杂度为边数的指数级函数。因此,需要寻求一种更加高效的算法。 增广路的定义(也称增广轨或交错轨): 若P是图G中一条连通两个未匹配顶点的路径,并且属M的边和不属M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径。 由增广路的定义可以推出下述三个结论: 1-P的路径长度必定为奇数,第一条边和最后一条边都不属于M。 2-P经过取反操作可以得到一个更大的匹配M’。 3-M为G的最大匹配当且仅当不存在相对于M的增广路径。 用增广路求最大匹配(称作匈牙利算法, 匈牙利 数学家 Edmonds于1965年提出) 算法轮廓: (1)置M为空 (2)找出一条增广路径P,通过取反操作获得更大的匹配M’代替M (3)重复(2)操作直到找不出增广路径为止 程序清单: #include<stdio.h> #include<string.h> bool g[201][201]; int n,m,ans; bool b[201]; int link[201]; bool init() { int _x,_y; memset(g,0,sizeof(g)); memset(link,0,sizeof(link)); ans=0; if(scanf("%d%d",&n,&m)==EOF)return false; for(int i=1;i<=n;i++) { scanf("%d",&_x); for(int j=0;j<_x;j++) { scanf("%d",&_y); g[ i ][_y]=true; } } return true; } bool find(int a) { for(int i=1;i<=m;i++) { if(g[a][ i ]==1&&!b[ i ]) { b[ i ]=true; if(link[ i ]==0||find(link[ i ])) { link[ i ]=a; return true; } } } return false; } int main() { while(init()) { for(int i=1;i<=n;i++) { memset(b,0,sizeof(b)); if(find(i))ans++; } printf("%d/n",ans); } } |
本文标签: 匈牙利算法!!!
版权声明:本文标题:匈牙利算法!!! 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.freenas.com.cn/jishu/1686637297h20261.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论