admin 管理员组

文章数量: 888526

yolo3各部分代码(超详细)

0.摘要
最近一段时间在学习yolo3,看了很多博客,理解了一些理论知识,但是学起来还是有些吃力,之后看了源码,才有了更进一步的理解。在这里,我不在赘述网络方面的代码,网络方面的代码比较容易理解,下面将给出整个yolo3代码的详解解析,整个源码中函数的作用以及调用关系见下图

def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):"""Convert final layer features to bounding box parameters."""num_anchors = len(anchors)#num_anchors=3# Reshape to batch, height, width, num_anchors, box_params.anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])#anchors=anchors[anchors_mask[1]]=anchors[[6,7,8]]= [116,90],  [156,198],  [373,326]"""#通过arange、reshape、tile的组合,根据grid_shape(13x13、26x26或52x52)创建y轴的0~N-1的组合grid_y,再创建x轴的0~N-1的组合grid_x,将两者拼接concatenate,形成NxN的grid(13x13、26x26或52x52)"""grid_shape = K.shape(feats)[1:3] # height, width,#13x13或26x26或52x52grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),[1, grid_shape[1], 1, 1])grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),[grid_shape[0], 1, 1, 1])grid = K.concatenate([grid_x, grid_y])grid = K.cast(grid, K.dtype(feats))#cast函数用法:cast(x, dtype, name=None),x:待转换的张量,type:需要转换成什么类型"""grid形式:(0,0),(0,1),(0,2)......(1,0),(1,1).....(12,12)"""feats = K.reshape(feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])"""(batch_size,13,13,3,85)""""此时的xy为中心坐标,相对于左上角的中心坐标"# Adjust preditions to each spatial grid point and anchor size."""将预测值调整为真实值""""将中心点相对于网格的坐标转换成在整张图片中的坐标,相对于13/26/52的相对坐标""将wh转换成预测框的wh,并处以416归一化"box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))#实际上就是除以13或26或52#box_xy = (K.sigmoid(feats[:,:,:,:2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))# ...操作符,在Python中,“...”(ellipsis)操作符,表示其他维度不变,只操作最前或最后1维;box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))box_confidence = K.sigmoid(feats[..., 4:5])box_class_probs = K.sigmoid(feats[..., 5:])#切片省略号的用法,省略前面左右的冒号,参考博客:=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-taskif calc_loss == True:return grid, feats, box_xy, box_whreturn box_xy, box_wh, box_confidence, box_class_probs#预测框相对于整张图片中心点的坐标与预测框的wh

参考:=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task
1.model.py

1.1 yolo_head()

  yolo_head()函数的输入是Darknet53的最后输出的三个特征图feats,anchors,num_class,input_shpe,此函数的功能是将特征图的进行解码,这一步极为重要,如其中一个特征图的shape是(13,13,255),其实质就是对应着(13,13,3,85),分别对应着13*13个网格,每个网格3个anchors,85=(x,y,w,h,confident),此时box的xy是相对于网格的偏移量,所以还需要经过一些列的处理,处理方式见下图:


def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):"""Convert final layer features to bounding box parameters."""num_anchors = len(anchors)#num_anchors=3# Reshape to batch, height, width, num_anchors, box_params.anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])#anchors=anchors[anchors_mask[1]]=anchors[[6,7,8]]= [116,90],  [156,198],  [373,326]"""#通过arange、reshape、tile的组合,根据grid_shape(13x13、26x26或52x52)创建y轴的0~N-1的组合grid_y,再创建x轴的0~N-1的组合grid_x,将两者拼接concatenate,形成NxN的grid(13x13、26x26或52x52)"""grid_shape = K.shape(feats)[1:3] # height, width,#13x13或26x26或52x52grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),[1, grid_shape[1], 1, 1])grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),[grid_shape[0], 1, 1, 1])grid = K.concatenate([grid_x, grid_y])grid = K.cast(grid, K.dtype(feats))#cast函数用法:cast(x, dtype, name=None),x:待转换的张量,type:需要转换成什么类型"""grid形式:(0,0),(0,1),(0,2)......(1,0),(1,1).....(12,12)"""feats = K.reshape(feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])"""(batch_size,13,13,3,85)""""此时的xy为中心坐标,相对于左上角的中心坐标"# Adjust preditions to each spatial grid point and anchor size."""将预测值调整为真实值""""将中心点相对于网格的坐标转换成在整张图片中的坐标,相对于13/26/52的相对坐标""将wh转换成预测框的wh,并处以416归一化"box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))#实际上就是除以13或26或52#box_xy = (K.sigmoid(feats[:,:,:,:2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))# ...操作符,在Python中,“...”(ellipsis)操作符,表示其他维度不变,只操作最前或最后1维;box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))box_confidence = K.sigmoid(feats[..., 4:5])box_class_probs = K.sigmoid(feats[..., 5:])#切片省略号的用法,省略前面左右的冒号,参考博客:=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-taskif calc_loss == True:return grid, feats, box_xy, box_whreturn box_xy, box_wh, box_confidence, box_class_probs#预测框相对于整张图片中心点的坐标与预测框的wh

1.2 yolo_correct_box()

 此函数的功能是将yolo_head()输出,也即是box相对于整张图片的中心坐标转换成box的左上角右下角的坐标
def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):'''Get corrected boxes''''''对上面函数输出的预测的坐标进行修正比如image_shape为[600,800],input_shape为[300, 500],那么new_shape为[300, 400]offset为[0, 0.125]scales为[0.5, 0.625]'''# 将box_xy, box_wh转换为输入图片上的真实坐标,输出boxes是框的左下、右上两个坐标(y_min, x_min, y_max, x_max)# ...操作符,在Python中,“...”(ellipsis)操作符,表示其他维度不变,只操作最前或最后1维;# np.array[i:j:s],当s<0时,i缺省时,默认为-1;j缺省时,默认为-len(a)-1;所以array[::-1]相当于array[-1:-len(a)-1:-1],也就是从最后一个元素到第一个元素复制一遍,即倒序box_yx = box_xy[..., ::-1]#将xy坐标进行交换,反序(y,x)box_hw = box_wh[..., ::-1]input_shape = K.cast(input_shape, K.dtype(box_yx))image_shape = K.cast(image_shape, K.dtype(box_yx))new_shape = K.round(image_shape * K.min(input_shape/image_shape))#.round用于取近似值,保留几位小数,第一个参数是一个浮点数,第二个参数是保留的小数位数,可选,如果不写的话默认保留到整数offset = (input_shape-new_shape)/2./input_shapescale = input_shape/new_shapebox_yx = (box_yx - offset) * scalebox_hw *= scale"""获得预测框的左上角与右下角的坐标"""box_mins = box_yx - (box_hw / 2.)box_maxes = box_yx + (box_hw / 2.)boxes =  K.concatenate([box_mins[..., 0:1],  # y_minbox_mins[..., 1:2],  # x_minbox_maxes[..., 0:1],  # y_maxbox_maxes[..., 1:2]  # x_max])#...操作符,在Python中,“...”(ellipsis)操作符,表示其他维度不变,只操作最前或最后1维;# Scale boxes back to original image shape.boxes *= K.concatenate([image_shape, image_shape])return boxes#得到预测框的左下角坐标与右上角坐标

1.3 yolo_box_and_score

 获得box与得分
def yolo_boxes_and_scores(feats, anchors, num_classes, input_shape, image_shape):'''Process Conv layer output'''box_xy, box_wh, box_confidence, box_class_probs = yolo_head(feats,anchors, num_classes, input_shape)boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape)boxes = K.reshape(boxes, [-1, 4])#reshape,将不同网格的值转换为框的列表。即(?,13,13,3,4)->(?,4)  ?:框的数目box_scores = box_confidence * box_class_probsbox_scores = K.reshape(box_scores, [-1, num_classes])#reshape,将框的得分展平,变为(?,80); ?:框的数目return boxes, box_scores#返回预测框的左下角与右上角的坐标与得分

1.4 yolo_eval()

   此函数的作用是删除冗余框,保留最优框,用到非极大值抑制算法
def yolo_eval(yolo_outputs,anchors,num_classes,image_shape,max_boxes=20,score_threshold=.6,iou_threshold=.5):"""Evaluate YOLO model on given input and return filtered boxes.""""""      yolo_outputs        #模型输出,格式如下【(?,13,13,255)(?,26,26,255)(?,52,52,255)】 ?:bitch size; 13-26-52:多尺度预测; 255:预测值(3*(80+5))anchors,            #[(10,13), (16,30), (33,23), (30,61), (62,45), (59,119), (116,90), (156,198),(373,326)]num_classes,     # 类别个数,coco集80类image_shape,        #placeholder类型的TF参数,默认(416, 416);max_boxes=20,       #每张图每类最多检测到20个框同类别框的IoU阈值,大于阈值的重叠框被删除,重叠物体较多,则调高阈值,重叠物体较少,则调低阈值score_threshold=.6, #框置信度阈值,小于阈值的框被删除,需要的框较多,则调低阈值,需要的框较少,则调高阈值;iou_threshold=.5):  #同类别框的IoU阈值,大于阈值的重叠框被删除,重叠物体较多,则调高阈值,重叠物体较少,则调低阈值"""num_layers = len(yolo_outputs)# #yolo的输出层数;num_layers = 3  -> 13-26-52anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]] # default setting# 每层分配3个anchor box.如13*13分配到[6,7,8]即[(116,90)(156,198)(373,326)]input_shape = K.shape(yolo_outputs[0])[1:3] * 32# 输入shape(?,13,13,255);即第一维和第二维分别*32  ->13*32=416; input_shape:(416,416)#yolo_outputs=[(batch_size,13,13,255),(batch_size,26,26,255),(batch_size,52,52,255)]#input_shape=416*416boxes = []box_scores = []for l in range(num_layers):_boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs[l],anchors[anchor_mask[l]], num_classes, input_shape, image_shape)boxes.append(_boxes)box_scores.append(_box_scores)boxes = K.concatenate(boxes, axis=0)box_scores = K.concatenate(box_scores, axis=0) #K.concatenate:将数据展平 ->(?,4)#可能会产生很多个预选框,需要经过(1)阈值的删选,(2)非极大值抑制的删选mask = box_scores >= score_threshold#得分大于置信度为True,否则为Flasemax_boxes_tensor = K.constant(max_boxes, dtype='int32')boxes_ = []scores_ = []classes_ = []"""# ---------------------------------------##   1、取出每一类得分大于score_threshold#   的框和得分#   2、对得分进行非极大抑制# ---------------------------------------## 对每一个类进行判断"""for c in range(num_classes):# TODO: use keras backend instead of tf.class_boxes = tf.boolean_mask(boxes, mask[:, c])#将输入的数组挑出想要的数据输出,将得分大于阈值的坐标挑选出来#将第c类中得分大于阈值的坐标挑选出来class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])# 将第c类中得分大于阈值的框挑选出来"""非极大值抑制部分"""# 非极大抑制,去掉box重合程度高的那一些"""原理:(1)从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU是否大于某个设定的阈值;(2)假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框F,是我们保留下来的。(3)从剩下的矩形框A、C、E中,选择概率最大的E,然后判断E与A、C的重叠度,重叠度大于一定的阈值,那么就扔掉;并标记E是我们保留下来的第二个矩形框。就这样一直重复,找到所有被保留下来的矩形框。"""nms_index = tf.image.non_max_suppression(class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold)class_boxes = K.gather(class_boxes, nms_index)class_box_scores = K.gather(class_box_scores, nms_index)classes = K.ones_like(class_box_scores, 'int32') * c#将class_box_scores中的数变成1boxes_.append(class_boxes)scores_.append(class_box_scores)classes_.append(classes)boxes_ = K.concatenate(boxes_, axis=0)scores_ = K.concatenate(scores_, axis=0)classes_ = K.concatenate(classes_, axis=0)#return 经过非极大值抑制保留下来的一个框return boxes_, scores_, classes_

1.5 preprocess_true_box()

def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):'''在preprocess_true_boxes中,输入:true_boxes:检测框,批次数16,最大框数20,每个框5个值,4个边界点和1个类别序号,如(16, 20, 5);input_shape:图片尺寸,如(416, 416);anchors:anchor box列表;num_classes:类别的数量;Preprocess true boxes to training input formatParameters----------true_boxes: array, shape=(m, T, 5)Absolute x_min, y_min, x_max, y_max, class_id relative to input_shape.input_shape: array-like, hw, multiples of 32anchors: array, shape=(N, 2), whnum_classes: integerReturns-------y_true: list of array, shape like yolo_outputs, xywh are reletive value'''# 检查有无异常数据 即txt提供的box id 是否存在大于 num_class的情况# true_boxes.shape  = (图片张数,每张图片box个数,5)(5是左上右下点坐标加上类别下标)assert (true_boxes[..., 4]<num_classes).all(), 'class id must be less than num_classes'num_layers = len(anchors)//3 # default settinganchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]]true_boxes = np.array(true_boxes, dtype='float32')input_shape = np.array(input_shape, dtype='int32')    # [416 416] shape(2,)# 将每个box的左上点和右下点坐标相加除2,即取中点!"""计算true_boxes:true_boxes:真值框,左上和右下2个坐标值和1个类别,如[184, 299, 191, 310, 0.0],结构是(16, 20, 5),16是批次数,20是框的最大数,5是框的5个值;boxes_xy:xy是box的中心点,结构是(16, 20, 2);boxes_wh:wh是box的宽和高,结构也是(16, 20, 2);input_shape:输入尺寸416x416;true_boxes:第0和1位设置为xy,除以416,归一化,第2和3位设置为wh,除以416,归一化,如[0.449, 0.730, 0.016, 0.026, 0.0]。"""boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2# 得到box宽高boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]# 中心坐标 和 宽高 都变成 相对于input_shape的比例true_boxes[..., 0:2] = boxes_xy/input_shape[::-1]true_boxes[..., 2:4] = boxes_wh/input_shape[::-1]# 这个m应该是batch的大小 即是输入图片的数量m = true_boxes.shape[0]# grid_shape [13,13 ]   [26,26]  [52,52]grid_shapes = [input_shape//{0:32, 1:16, 2:8}[l] for l in range(num_layers)]#y_true是全0矩阵(np.zeros)列表,即[(16,13,13,3,6), (16,26,26,3,6), (16,52,52,3,6)]y_true = [np.zeros((m,grid_shapes[l][0],grid_shapes[l][1],len(anchor_mask[l]),5+num_classes),dtype='float32') for l in range(num_layers)]# y_true  m*13*13*3*(5+num_clasess)#         m*26*26*3*(5+num_classes)#         m*52*52*3*(5+num_classes)# Expand dim to apply broadcasting.# Expand dim to apply broadcasting.#在原先axis出添加一个维度,由(9,2)转为(1,9,2)anchors = np.expand_dims(anchors, 0)# 网格中心为原点(即网格中心坐标为 (0,0) ), 计算出anchor 右下角坐标anchor_maxes = anchors / 2.#计算出左上标anchor_mins = -anchor_maxes# 去掉异常数据valid_mask = boxes_wh[..., 0]>0for b in range(m):# Discard zero rows.wh = boxes_wh[b, valid_mask[b]]if len(wh)==0: continue# Expand dim to apply broadcasting.wh = np.expand_dims(wh, -2)box_maxes = wh / 2.box_mins = -box_maxes# # 假设 bouding box 的中心也位于网格的中心"""计算标注框box与anchor box的iou值,计算方式很巧妙:box_mins的shape是(7,1,2),anchor_mins的shape是(1,9,2),intersect_mins的shape是(7,9,2),即两两组合的值;intersect_area的shape是(7,9);box_area的shape是(7,1);anchor_area的shape是(1,9);iou的shape是(7,9);IoU数据,即anchor box与检测框box,两两匹配的iou值"""intersect_mins = np.maximum(box_mins, anchor_mins)#逐位比较intersect_maxes = np.minimum(box_maxes, anchor_maxes)intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]#宽*高box_area = wh[..., 0] * wh[..., 1]anchor_area = anchors[..., 0] * anchors[..., 1]iou = intersect_area / (box_area + anchor_area - intersect_area)# Find best anchor for each true boxbest_anchor = np.argmax(iou, axis=-1)"""设置y_true的值:t是box的序号;n是最优anchor的序号;l是层号;如果最优anchor在层l中,则设置其中的值,否则默认为0;true_boxes是(16, 20, 5),即批次、box数、框值;true_boxes[b, t, 0],其中b是批次序号、t是box序号,第0位是x,第1位是y;grid_shapes是3个检测图的尺寸,将归一化的值,与框长宽相乘,恢复为具体值;k是在anchor box中的序号;c是类别,true_boxes的第4位;将xy和wh放入y_true中,将y_true的第4位框的置信度设为1,将y_true第5~n位的类别设为1;"""for t, n in enumerate(best_anchor):# 遍历anchor 尺寸 3个尺寸# 因为此时box 已经和一个anchor box匹配上,看这个anchor box属于那一层,小,中,大,然后将其box分配到那一层for l in range(num_layers):if n in anchor_mask[l]:#因为grid_shape格式是hw所以是x*grid_shapes[l][1]=x*w,求出对应所在网格的横坐标,这里的x是相对于整张图片的相对坐标,# 是在原先坐标上除以了w,所以现在要乘以wi = np.floor(true_boxes[b,t,0]*grid_shapes[l][1]).astype('int32')#np.around 四舍五入#np.floor向下取整#np.ceil向上取整#np.where条件选取# np.floor 返回不大于输入参数的最大整数。 即对于输入值 x ,将返回最大的整数 i ,使得 i <= x。# true_boxes x,y,w,h, 此时x y w h都是相对于整张图像的# 第b个图像 第 t个 bounding box的 x 乘以 第l个grid shap的x(grid shape 格式是hw,# 因为input_shape格式是hw)# 找到这个bounding box落在哪个cell的中心#i,j是所在网格的位置j = np.floor(true_boxes[b,t,1]*grid_shapes[l][0]).astype('int32')# 找到n 在 anchor_box的索引位置k = anchor_mask[l].index(n)# 得到box的idc = true_boxes[b,t, 4].astype('int32')# 第b个图像 第j行 i列 第k个anchor x,y,w,h,confindence,类别概率y_true[l][b, j, i, k, 0:4] = true_boxes[b,t, 0:4]y_true[l][b, j, i, k, 4] = 1# 置信度是1 因为含有目标y_true[l][b, j, i, k, 5+c] = 1# 类别的one-hot编码return y_true

1.6 yolo_loss

  此函数定义损失函数,损失函数包括三个部分,坐标损失,置信度损失,类别损失

def yolo_loss(args, anchors, num_classes, ignore_thresh=.5, print_loss=False):"""true_boxes : 实际框的位置和类别,我们的输入。三个维度:第一个维度:图片张数第二个维度:一张图片中有几个实际框第三个维度: [x, y, w, h, class],x,y 是实际框的中心点坐标,w,h 是框的宽度和高度。x,y,w,h 均是除以图片分辨率得到的[0,1]范围的值。anchors : 实际anchor boxes 的值,论文中使用了五个。[w,h],都是相对于gird cell 长宽的比值。二个维度:第一个维度:anchor boxes的数量,这里是5第二个维度:[w,h],w,h,都是相对于gird cell 长宽的比值。"""'''Return yolo_loss tensorParameters----------yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_bodyy_true: list of array, the output of preprocess_true_boxesanchors: array, shape=(N, 2), whnum_classes: integerignore_thresh: float, the iou threshold whether to ignore object confidence lossReturns-------loss: tensor, shape=(1,)'''num_layers = len(anchors)//3 # default settingyolo_outputs = args[:num_layers]y_true = args[num_layers:]anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]]input_shape = K.cast(K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0]))grid_shapes = [K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0])) for l in range(num_layers)]loss = 0m = K.shape(yolo_outputs[0])[0] # batch size, tensormf = K.cast(m, K.dtype(yolo_outputs[0]))for l in range(num_layers):object_mask = y_true[l][..., 4:5]#置信度true_class_probs = y_true[l][..., 5:]#类别grid, raw_pred, pred_xy, pred_wh = yolo_head(yolo_outputs[l],anchors[anchor_mask[l]], num_classes, input_shape, calc_loss=True)pred_box = K.concatenate([pred_xy, pred_wh])# Darknet raw box to calculate loss.# 这是对x,y,w,b转换公式的反变换raw_true_xy = y_true[l][..., :2]*grid_shapes[l][::-1] - gridraw_true_wh = K.log(y_true[l][..., 2:4] / anchors[anchor_mask[l]] * input_shape[::-1])# 这部操作是避免出现log(0) = 负无穷,故当object_mask置信率接近0是返回全0结果# K.switch(条件函数,返回值1,返回值2)其中1,2要等shaperaw_true_wh = K.switch(object_mask, raw_true_wh, K.zeros_like(raw_true_wh)) # avoid log(0)=-inf#提升针对小物体的小技巧:针对 YOLOv3来说,regression损失会乘一个(2-w*h)的比例系数,# w 和 h 分别是ground truth 的宽和高。如果不减去 w*h,AP 会有一个明显下降。如果继续往上加,如 (2-w*h)*1.5,总体的 AP 还会涨一个点左右(包括验证集和测试集),大概是因为 COCO 中小物体实在太多的原因。box_loss_scale = 2 - y_true[l][...,2:3]*y_true[l][...,3:4]# Find ignore mask, iterate over each of batch.ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True)object_mask_bool = K.cast(object_mask, 'bool')##将真实标定的数据置信率转换为T or F的掩膜def loop_body(b, ignore_mask):true_box = tf.boolean_mask(y_true[l][b,...,0:4], object_mask_bool[b,...,0])#挑选出置信度大于0的框的相应的坐标,truebox形式为中心坐标xy与hwiou = box_iou(pred_box[b], true_box)#计算iou,pre_box是通过yolo_head解码之后的xywhbest_iou = K.max(iou, axis=-1)#选取最大iou的ignore_mask = ignore_mask.write(b, K.cast(best_iou<ignore_thresh, K.dtype(true_box)))return b+1, ignore_mask_, ignore_mask = K.control_flow_ops.while_loop(lambda b,*args: b<m, loop_body, [0, ignore_mask])ignore_mask = ignore_mask.stack()#将一个列表中维度数目为R的张量堆积起来形成维度为R+1的新张量ignore_mask = K.expand_dims(ignore_mask, -1)# K.binary_crossentropy is helpful to avoid exp overflow.xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(raw_true_xy, raw_pred[...,0:2], from_logits=True)wh_loss = object_mask * box_loss_scale * 0.5 * K.square(raw_true_wh-raw_pred[...,2:4])confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True)+ \(1-object_mask) * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True) * ignore_maskclass_loss = object_mask * K.binary_crossentropy(true_class_probs, raw_pred[...,5:], from_logits=True)xy_loss = K.sum(xy_loss) / mfwh_loss = K.sum(wh_loss) / mfconfidence_loss = K.sum(confidence_loss) / mfclass_loss = K.sum(class_loss) / mfloss += xy_loss + wh_loss + confidence_loss + class_lossif print_loss:loss = tf.Print(loss, [loss, xy_loss, wh_loss, confidence_loss, class_loss, K.sum(ignore_mask)], message='loss: ')return loss

2.train.py

整个训练分为两个阶段,第一个阶段为050epoch,训练最后的loss层,前面的层被冻结,第二个阶段为50100个epoch训练前面的层

def _main():annotation_path = '2007_train.txt'log_dir = 'logs/000/'classes_path = 'model_data/voc_classes.txt'anchors_path = 'model_data/yolo_anchors.txt'class_names = get_classes(classes_path)num_classes = len(class_names)anchors = get_anchors(anchors_path)input_shape = (416,416) # multiple of 32, hwis_tiny_version = len(anchors)==6 # default settingif is_tiny_version:model = create_tiny_model(input_shape, anchors, num_classes,freeze_body=2, weights_path='model_data/tiny_yolo_weights.h5')else:model = create_model(input_shape, anchors, num_classes,freeze_body=2, weights_path='model_data/yolo_weights.h5') # make sure you know what you freezelogging = TensorBoard(log_dir=log_dir)checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',monitor='val_loss', save_weights_only=True, save_best_only=True, period=3)reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1)"""monitor:被监测的量factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。epsilon:阈值,用来确定是否进入检测值的“平原区”cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作min_lr:学习率的下限"""early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)"""monitor: 被监测的数据。min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。patience: 没有进步的训练轮数,在这之后训练就会被停止。verbose: 详细信息模式。mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。restore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重"""val_split = 0.1with open(annotation_path) as f:lines = f.readlines()np.random.seed(10101)np.random.shuffle(lines)np.random.seed(None)num_val = int(len(lines)*val_split)num_train = len(lines) - num_val# Train with frozen layers first, to get a stable loss.# Adjust num epochs to your dataset. This step is enough to obtain a not bad model.if True:model.compile(optimizer=Adam(lr=1e-3), loss={# use custom yolo_loss Lambda layer.# # 使用定制的 yolo_loss Lambda层'yolo_loss': lambda y_true, y_pred: y_pred})#解释:模型compile时传递的是自定义的loss,而把loss写成一个层融合到model里面后,# y_pred就是loss。自定义损失函数规定要以y_true, y_pred为参数batch_size = 32print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),steps_per_epoch=max(1, num_train//batch_size),validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),validation_steps=max(1, num_val//batch_size),epochs=50,initial_epoch=0,callbacks=[logging, checkpoint])model.save_weights(log_dir + 'trained_weights_stage_1.h5')# Unfreeze and continue training, to fine-tune.# Train longer if the result is not good.if True:for i in range(len(model.layers)):model.layers[i].trainable = Truemodel.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the changeprint('Unfreeze all of the layers.')batch_size = 32 # note that more GPU memory is required after unfreezing the bodyprint('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),steps_per_epoch=max(1, num_train//batch_size),validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),validation_steps=max(1, num_val//batch_size),epochs=100,initial_epoch=50,callbacks=[logging, checkpoint, reduce_lr, early_stopping])model.save_weights(log_dir + 'trained_weights_final.h5')# Further training if needed.def get_classes(classes_path):'''loads the classes'''with open(classes_path) as f:class_names = f.readlines()class_names = [c.strip() for c in class_names]return class_namesdef get_anchors(anchors_path):'''loads the anchors from a file'''with open(anchors_path) as f:anchors = f.readline()anchors = [float(x) for x in anchors.split(',')]return np.array(anchors).reshape(-1, 2)def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,weights_path='model_data/yolo_weights.h5'):'''create the training model'''K.clear_session() # get a new sessionimage_input = Input(shape=(None, None, 3))h, w = input_shapenum_anchors = len(anchors)y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \num_anchors//3, num_classes+5)) for l in range(3)]model_body = yolo_body(image_input, num_anchors//3, num_classes)print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))if load_pretrained:model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)print('Load weights {}.'.format(weights_path))"""根据预训练权重的地址weights_path,加载权重文件,设置参数为,按名称对应by_name,略过不匹配skip_mismatch;选择冻结模式:模式1是冻结185层,模式2是保留最底部3层,其余全部冻结。整个模型共有252层;将所冻结的层,设置为不可训练,trainable=False;"""if freeze_body in [1, 2]:# Freeze darknet53 body or freeze all but 3 output layers.num = (185, len(model_body.layers)-3)[freeze_body-1]for i in range(num): model_body.layers[i].trainable = Falseprint('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))"""Lambda是Keras的自定义层,输入为model_body.output和y_true,输出output_shape是(1,),即一个损失值;自定义Lambda层的名字name为yolo_loss;层的参数是锚框列表anchors、类别数num_classes和IoU阈值ignore_thresh。其中,ignore_thresh用于在物体置信度损失中过滤IoU较小的框;yolo_loss是损失函数的核心逻辑。"""model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})([*model_body.output, *y_true])"""把loss写成一个层,作为最后的输出,搭建模型的时候,就只需要将模型的output定义为loss,而compile的时候,直接将loss设置为y_pred(因为模型的输出就是loss,所以y_pred就是loss),无视y_true,训练的时候,y_true随便扔一个符合形状的数组进去就行了"""#keras.layer.Lambda将任意表达式封装为 Layer 对象#keras.layers.Lambda(function, output_shape=None, mask=None, arguments=None)#function: 需要封装的函数。 将输入张量作为第一个参数。# output_shape: 预期的函数输出尺寸。可以是元组或者函数。 如果是元组,它只指定第一个维度;# arguments: 可选的。传递给函数function的关键字参数。model = Model([model_body.input, *y_true], model_loss)#构建了以图片数据和图片标签(y_true)为输入,# 模型损失(model_loss)为输出(y_pred)的模型 model。return modeldef create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,weights_path='model_data/tiny_yolo_weights.h5'):'''create the training model, for Tiny YOLOv3'''K.clear_session() # get a new sessionimage_input = Input(shape=(None, None, 3))h, w = input_shapenum_anchors = len(anchors)y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \num_anchors//2, num_classes+5)) for l in range(2)]model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))if load_pretrained:model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)print('Load weights {}.'.format(weights_path))if freeze_body in [1, 2]:# Freeze the darknet body or freeze all but 2 output layers.num = (20, len(model_body.layers)-2)[freeze_body-1]for i in range(num): model_body.layers[i].trainable = Falseprint('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})([*model_body.output, *y_true])model = Model([model_body.input, *y_true], model_loss)return modeldef data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):'''data generator for fit_generatorannotation_lines:标注数据的行,每行数据包含图片路径,和框的位置信息,种类batch_size:每批图片的大小input_shape: 图片的输入尺寸anchors: 大小num_classes: 类别数'''n = len(annotation_lines)i = 0while True:image_data = []box_data = []for b in range(batch_size):if i==0:np.random.shuffle(annotation_lines)image, box = get_random_data(annotation_lines[i], input_shape, random=True)#从标记的样本分离image与box,得到样本图片与样本labelimage_data.append(image)box_data.append(box)i = (i+1) % nimage_data = np.array(image_data)box_data = np.array(box_data)y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)yield [image_data, *y_true], np.zeros(batch_size)def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes):n = len(annotation_lines)if n==0 or batch_size<=0: return Nonereturn data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)if __name__ == '__main__':_main()

3.utils.py

3.1 letter_image_box(),此函数的作用主要是将输入的图片进行等比例缩小,并在空余地方填成灰色

def letterbox_image(image, size):'''resize image with unchanged aspect ratio using padding'''iw, ih = image.size#图像初始的大小,任意值   以(1000,500)为例w, h = size #模型要求的(416,416)scale = min(w/iw, h/ih)#416/1000  0.416<0.832  ,416/500nw = int(iw*scale) #416/1000*1000=416nh = int(ih*scale)#416/1000*400=208image = image.resize((nw,nh), Image.BICUBIC)new_image = Image.new('RGB', size, (128,128,128))#new : 这个函数创建一幅给定模式(mode)和尺寸(size)的图片。如果省略 color 参数,则创建的图片被黑色填充满,# 如果 color 参数是 None 值,则图片还没初始化new_image.paste(image, ((w-nw)//2, (h-nh)//2)) #w-nw=0,(h-nh)//2=(416-208)//2=108return new_image

它的作用如下:

3.2 get_random_data()

此函数的功能主要是进行数据增强与输入图像预处理(同letter_image_box)

def get_random_data(annotation_line, input_shape, random=True, max_boxes=20, jitter=.3, hue=.1, sat=1.5, val=1.5, proc_img=True):'''random preprocessing for real-time data augmentationannotation_lines:标注数据的行,每行数据包含图片路径,和框的位置信息,种类return:imagedata是经过resize并填充的样本图片,resize成(416,416),并填充灰度boxdata是每张image中做的标记label,shpe,对应着truebox,批次数16,最大框数20,每个框5个值,4个边界点和1个类别序号,如(16, 20, 5)为(,batchsize,maxbox,5),每张图片最多的有maxbox个类,5为左上右下的坐标'''line = annotation_line.split()#删除空格image = Image.open(line[0])iw, ih = image.sizeh, w = input_shape#(416,416)box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]])if not random:# resize image#将图片等比例转换为416x416的图片,其余用灰色填充,# 即(128, 128, 128),同时颜色值转换为0~1之间,即每个颜色值除以255;scale = min(w/iw, h/ih)nw = int(iw*scale)nh = int(ih*scale)dx = (w-nw)//2dy = (h-nh)//2image_data=0if proc_img:image = image.resize((nw,nh), Image.BICUBIC)new_image = Image.new('RGB', (w,h), (128,128,128))new_image.paste(image, (dx, dy))image_data = np.array(new_image)/255.# 上面的作用和letter_box一致,加了一个把rgb范围变成0-1# correct boxes   max_boxes=20# correct boxes# 将边界框box等比例缩小,再加上填充的偏移量dx和dy,因为新的图片部分用灰色填充,影# 响box的坐标系,box最多有max_boxes个,即20个box_data = np.zeros((max_boxes,5))#shap->(20,5)if len(box)>0:np.random.shuffle(box)if len(box)>max_boxes: box = box[:max_boxes]box[:, [0,2]] = box[:, [0,2]]*scale + dxbox[:, [1,3]] = box[:, [1,3]]*scale + dybox_data[:len(box)] = boxreturn image_data, box_data# resize image#通过jitter参数,随机计算new_ar和scale,生成新的nh和nw,# 将原始图像随机转换为nw和nh尺寸的图像,即非等比例变换图像。#也即是数据增强new_ar = w/h * rand(1-jitter,1+jitter)/rand(1-jitter,1+jitter)scale = rand(.25, 2)if new_ar < 1:nh = int(scale*h)nw = int(nh*new_ar)else:nw = int(scale*w)nh = int(nw/new_ar)image = image.resize((nw,nh), Image.BICUBIC)# place imagedx = int(rand(0, w-nw))dy = int(rand(0, h-nh))new_image = Image.new('RGB', (w,h), (128,128,128))new_image.paste(image, (dx, dy))image = new_image# flip image or not#根据随机数flip,随机左右翻转FLIP_LEFT_RIGHT图片flip = rand()<.5if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)# distort image#在HSV坐标域中,改变图片的颜色范围,hue值相加,sat和vat相乘,# 先由RGB转为HSV,再由HSV转为RGB,添加若干错误判断,避免范围过大hue = rand(-hue, hue)sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat)val = rand(1, val) if rand()<.5 else 1/rand(1, val)x = rgb_to_hsv(np.array(image)/255.)x[..., 0] += huex[..., 0][x[..., 0]>1] -= 1x[..., 0][x[..., 0]<0] += 1x[..., 1] *= satx[..., 2] *= valx[x>1] = 1x[x<0] = 0image_data = hsv_to_rgb(x) # numpy array, 0 to 1# correct boxes#将所有的图片变换,增加至检测框中,并且包含若干异常处理,避免变换之后的值过大或过小,去除异常的boxbox_data = np.zeros((max_boxes,5))if len(box)>0:np.random.shuffle(box)box[:, [0,2]] = box[:, [0,2]]*nw/iw + dxbox[:, [1,3]] = box[:, [1,3]]*nh/ih + dyif flip: box[:, [0,2]] = w - box[:, [2,0]]box[:, 0:2][box[:, 0:2]<0] = 0box[:, 2][box[:, 2]>w] = wbox[:, 3][box[:, 3]>h] = hbox_w = box[:, 2] - box[:, 0]box_h = box[:, 3] - box[:, 1]box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid boxif len(box)>max_boxes: box = box[:max_boxes]box_data[:len(box)] = boxreturn image_data, box_data

4.yolo.py()

此函数主要用于检测图片或者视频

def generate(self):"""①加载权重参数文件,生成检测框,得分,以及对应类别②利用model.py中的yolo_eval函数生成检测框,得分,所属类别③初始化时调用generate函数生成图片的检测框,得分,所属类别(self.boxes, self.scores, self.classes)"""model_path = os.path.expanduser(self.model_path)assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'# Load model, or construct model and load weights.num_anchors = len(self.anchors)num_classes = len(self.class_names)is_tiny_version = num_anchors==6 # default settingtry:self.yolo_model = load_model(model_path, compile=False)except:self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes matchelse:##[-1]:网络最后一层输出。 output_shape[-1]:输出维度的最后一维。 -> (?,13,13,255)# 255 = 9/3*(80+5). 9/3:每层特征图对应3个anchor box  80:80个类别 5:4+1,框的4个值+1个置信度assert self.yolo_model.layers[-1].output_shape[-1] == \num_anchors/len(self.yolo_model.output) * (num_classes + 5), \'Mismatch between model and given anchor and class sizes'#Python assert(断言)用于判断一个表达式,在表达式条件为 false 的时候触发异常。#断言可以在条件不满足程序运行的情况下直接返回错误,而不必等待程序运行后出现崩溃的情况print('{} model, anchors, and classes loaded.'.format(model_path))# Generate colors for drawing bounding boxes.# Generate colors for drawing bounding boxes.# 生成绘制边框的颜色。# h(色调):x/len(self.class_names)  s(饱和度):1.0  v(明亮):1.0# 对于80种coco目标,确定每一种目标框的绘制颜色,即:将(x/80, 1.0, 1.0)的颜色转换为RGB格式,并随机调整颜色以便于肉眼识别,# 其中:一个1.0表示饱和度,一个1.0表示亮度hsv_tuples = [(x / len(self.class_names), 1., 1.)for x in range(len(self.class_names))]self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) #hsv转换为rgb# hsv取值范围在【0,1】,而RBG取值范围在【0,255】,所以乘上255self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),self.colors))np.random.seed(10101)  # Fixed seed for consistent colors across runs.np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.np.random.seed(None)  # Reset seed to default.# Generate output tensor targets for filtered bounding boxes.#为过滤的边界框生成输出张量目标self.input_image_shape = K.placeholder(shape=(2, ))if self.gpu_num>=2:self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,len(self.class_names), self.input_image_shape,score_threshold=self.score, iou_threshold=self.iou)return boxes, scores, classesdef detect_image(self, image):"""开始计时->①调用letterbox_image函数,即:先生成一个用“绝对灰”R128-G128-B128填充的416×416新图片,然后用按比例缩放(采样方式:BICUBIC)后的输入图片粘贴,粘贴不到的部分保留为灰色。②model_image_size定义的宽和高必须是32的倍数;若没有定义model_image_size,将输入的尺寸调整为32的倍数,并调用letterbox_image函数进行缩放。③将缩放后的图片数值除以255,做归一化。④将(416,416,3)数组调整为(1,416,416,3)元祖,满足网络输入的张量格式:image_data。->①运行self.sess.run()输入参数:输入图片416×416,学习模式0测试/1训练。self.yolo_model.input: image_data,self.input_image_shape: [image.size[1], image.size[0]],K.learning_phase(): 0。②self.generate(),读取:model路径、anchor box、coco类别、加载模型yolo.h5.,对于80中coco目标,确定每一种目标框的绘制颜色,即:将(x/80,1.0,1.0)的颜色转换为RGB格式,并随机调整颜色一遍肉眼识别,其中:一个1.0表示饱和度,一个1.0表示亮度。③若GPU>2调用multi_gpu_model()->①yolo_eval(self.yolo_model.output),max_boxes=20,每张图没类最多检测20个框。②将anchor_box分为3组,分别分配给三个尺度,yolo_model输出的feature map③特征图越小,感受野越大,对大目标越敏感,选大的anchor box->分别对三个feature map运行out_boxes, out_scores, out_classes,返回boxes、scores、classes。"""start = timer()# # 调用letterbox_image()函数,即:先生成一个用“绝对灰”R128-G128-B128“填充的416x416新图片,# 然后用按比例缩放(采样方法:BICUBIC)后的输入图片粘贴,粘贴不到的部分保留为灰色if self.model_image_size != (None, None):  #判断图片是否存在assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'# assert断言语句的语法格式 model_image_size[0][1]指图像的w和h,且必须是32的整数倍boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))# #letterbox_image对图像调整成输入尺寸(w,h)else:new_image_size = (image.width - (image.width % 32),image.height - (image.height % 32))boxed_image = letterbox_image(image, new_image_size)image_data = np.array(boxed_image, dtype='float32')print(image_data.shape)#(416,416,3)image_data /= 255.#将缩放后图片的数值除以255,做归一化image_data = np.expand_dims(image_data, 0)  # Add batch dimension.# 批量添加一维 -> (1,416,416,3) 为了符合网络的输入格式 -> (bitch, w, h, c)out_boxes, out_scores, out_classes = self.sess.run([self.boxes, self.scores, self.classes],feed_dict={self.yolo_model.input: image_data,#图像数据self.input_image_shape: [image.size[1], image.size[0]],#图像尺寸416x416K.learning_phase(): 0#学习模式 0:测试模型。 1:训练模式})#目的为了求boxes,scores,classes,具体计算方式定义在generate()函数内。在yolo.py第61行print('Found {} boxes for {}'.format(len(out_boxes), 'img'))# 绘制边框,自动设置边框宽度,绘制边框和类别文字,使用Pillow绘图库(PIL,头有声明)# 设置字体font = ImageFont.truetype(font='font/FiraMono-Medium.otf',size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))# 设置目标框线条的宽度thickness = (image.size[0] + image.size[1]) // 300#厚度## 对于c个目标类别中的每个目标框i,调用Pillow画图for i, c in reversed(list(enumerate(out_classes))):predicted_class = self.class_names[c] #类别  #目标类别的名字box = out_boxes[i]#框score = out_scores[i]#置信度label = '{} {:.2f}'.format(predicted_class, score)draw = ImageDraw.Draw(image)#创建一个可以在给定图像上绘图的对象label_size = draw.textsize(label, font)##标签文字   #返回label的宽和高(多少个pixels)#返回给定字符串的大小,以像素为单位。top, left, bottom, right = box# 目标框的上、左两个坐标小数点后一位四舍五入"""防止检测框溢出"""top = max(0, np.floor(top + 0.5).astype('int32'))left = max(0, np.floor(left + 0.5).astype('int32'))# 目标框的下、右两个坐标小数点后一位四舍五入,与图片的尺寸相比,取最小值# 防止边框溢出bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))right = min(image.size[0], np.floor(right + 0.5).astype('int32'))print(label, (left, top), (right, bottom))# 确定标签(label)起始点位置:标签的左、下if top - label_size[1] >= 0:text_origin = np.array([left, top - label_size[1]])else:text_origin = np.array([left, top + 1])# My kingdom for a good redistributable image drawing library.# 画目标框,线条宽度为thicknessfor i in range(thickness):#画框draw.rectangle([left + i, top + i, right - i, bottom - i],outline=self.colors[c])# 画标签框draw.rectangle( #文字背景[tuple(text_origin), tuple(text_origin + label_size)],fill=self.colors[c])# 填写标签内容draw.text(text_origin, label, fill=(0, 0, 0), font=font)#文案del drawend = timer()print(end - start)return imagedef close_session(self):self.sess.close()

以上即是主要yolo3的主要部分,下面将会对模型进行测试

5.测试

在理解完原理与上述代码之后,下面进行测试(当然也可以不用理解源码也可以直接测试)

(1) 首先需要下载yolo3.weights,下载地址:
.weights
(2) 在pycharm的终端中输入python convert.py yolov3.cfg yolov3.weights model_data/yolo_weights.h5
作用是将yolo3.weights文件转换成Keras可以处理的.h5权值文件,
(3)随便在网上下载一张图片进行测试,比如笔者用一张飞机的照片
(4)在源码中,不能直接运行yolo.py,因为在此代码中没有if__name__==‘main’:
所以需要自己添加:

if __name__ == '__main__':"""测试图片"""yolo = YOLO()path = r'F:\chorme_download\keras-yolo3-master\微信图片_20200313132254.jpg'try:image = Image.open(path)except:print('Open Error! Try again!')else:r_image = yolo.detect_image(image)r_image.show()yolo.close_session()"""测试视频,将detect_video中的path置0即调用自己电脑的摄像头"""yolo=YOLO()detect_video(yolo,0)

6.结果

原文链接:.html

本文标签: yolo3各部分代码(超详细)