admin 管理员组

文章数量: 888297

TF 菜鸡入门(一)

例子

import tensorflow as tf
import numpy as npx_data = np.random.rand(100).astype(np.float32)
y_data = x_data*3 + 0.3
# Variable 表示可变,可训练变量
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1]))y = Weights*x_data + biases# 定义损失函数
loss = tf.reduce_mean(tf.square(y-y_data))
#定义优化器
optimizer = tf.train.GradientDescentOptimizer(0.5)# 用优化器去优化损失函数
train = optimizer.minimize(loss)# 只要前面用到了Variable 变量,后面就一定要初始化并用sess run 一下
init = tf.global_variables_initializer()sess = tf.Session()
# 初始化
sess.run(init)for step in range(201):sess.run(train)if step % 20 == 0:# sess.run(x)才能获得x的值print(step, sess.run(Weights), sess.run(biases))

Session两种用法

import tensorflow as tfmatrix1 = tf.constant([[3,3]])
matrix2 = tf.constant([[2], [2]])product = tf.matmul(matrix1,matrix2)# session的两种使用方法, 跟文件读写差不多
sess = tf.Session()
result = sess.run(product)
print(result)
sess.close()with tf.Session() as sess:result2 = sess.run(product)print(result2)

Variable赋值 assign

import tensorflow as tfstate = tf.Variable(0, name = "counter")
one = tf.constant(1)new_value = tf.add(state, one)
update = tf.assign(state, new_value)
# 注意初始化
init = tf.global_variables_initializer()with tf.Session() as sess:sess.run(init)for _ in range(3):sess.run(update)# Variable 变量的获取需要用sess.runprint(sess.run(state))

placeholder使用

import tensorflow as tf
# placeholder 先占位,再传值
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)output = tf.multiply(input1, input2)
with tf.Session() as sess:#用feed传值print(sess.run(output, feed_dict={input1:[7.], input2:[2.0]}))

激励函数

完成非线性转换

本文标签: TF 菜鸡入门(一)