admin 管理员组文章数量: 888299
CodeForces 1253 C. Sweets Eating DP
一、内容
Tsumugi brought n delicious sweets to the Light Music Club. They are numbered from 1 to n, where the i-th sweet has a sugar concentration described by an integer aiYui loves sweets, but she can eat at most m
sweets each day for health reasons.Days are -indexed (numbered 1,2,3,…). Eating the sweet i at the d-th day will cause a sugar penalty of (d⋅ai), as sweets become more sugary with time. A sweet can be eaten at most once.The total sugar penalty will be the sum of the individual penalties of each sweet eaten.Suppose that Yui chooses exactly ksweets, and eats them in any order she wants. What is the minimum total sugar penalty she can get?Since Yui is an undecided girl, she wants you to answer this question for every value of kbetween 1 and n
.
Input
The first line contains two integers n
and m (1≤m≤n≤200 000).The second line contains n
integers a1,a2,…,an (1≤ai≤200 000).
Output
You have to output n
integers x1,x2,…,xn on a single line, separed by spaces, where xk is the minimum total sugar penalty Yui can get if she eats exactly k sweets.
Input
9 2
6 19 3 4 4 2 6 7 8
Output
2 5 11 18 30 43 62 83 121
二、思路
- 首先按照从小到大进行排序。
- 然后根据前几个我们可以发现规律,每次我们只需要让最小的m个数乘以最大的天数,剩下的m个数依次递减,这样得到的答案就是最优的。找出规律,利用前缀和就可以求解出。
- dp【i】:表示的是第i颗糖的最小花费
dp【i】 = dp[max(i - m, 0)] + sum[i] 如果i - m < 0 就令为0.
三、代码
#include <cstdio>
#include <algorithm>
#define max(a, b) (a > b ? a : b)
using namespace std;
typedef long long ll;
const int N = 2e5 + 5;
int n, m, a[N];
ll sum[N], dp[N];
int main() {scanf("%d%d", &n, &m);for (int i = 1; i <= n; i++) scanf("%d", &a[i]);sort(a + 1, a + 1 + n);for (int i = 1; i <= n; i++) {sum[i] = a[i] + sum[i - 1];}for (int i = 1; i <= n; i++) {dp[i] = dp[max(0, i - m)] + sum[i];printf("%lld ", dp[i]); } return 0;
}
本文标签: CodeForces1253 C Sweets EatingDP
版权声明:本文标题:CodeForces1253 C. Sweets EatingDP 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.freenas.com.cn/jishu/1693586271h230786.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论